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Let us consider a medium of conductivity 6 whose particles
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The Euler equations, which constitute the fundamental equa-

tions of nonrelativistic magnetohydrodynamics are written
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where'§ is the gravitational acceleration. In case of a viscous fluid,

F=pma?, 3)
where ¥V is the kinematic viscosity.
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Passing to the corresponding relativistic equations, we introdu-

ce after Mandelstamm-Tamm [1]the conductivity tensor g4, having the

property that in the system of momentary rest, the components ' '3'41«-3” “?-n&}j*

are the only ones different from zero and equal to
G114 55 Gpas T2 Ty == O (4)
Relative to a Lorentz transformation, the["o';.s-, are transformed

according to the law
: O'Iy,yp.———ﬂp_aaypapara'aﬁ-r. (5) '

It is easy to see that the relabivistic eqhation corresponding
to (1) is

’ f«= &GWF?T'

On the other hand the energy density quadrivector is written
Ju = Fp_az‘ja- '(7)
It results from (6) and (7) that
fo=Fyavas; For. (8

Let us then write the relativistic Euler equations

du ) o ey

where
d .
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are the components of the velocity quadrivector, and

dit=ct dit— dzt— c‘iy"‘—— dat. (1)



The equations (9) are the relativistic equations of magneto-
hydrodynamics in the case where gravitational forces and thosedue to
viscosity are neglected. But these too may be taken into consideration.

We shall assume to that effect that -the gravitational field is sufficient-
ly weak for the Fock approximation to be valid [2]. Then the tensor of
the energy impulse of the fluid in motion in a gravitational field has

the following components :

!
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Tk = pé’,v‘.———pm, : (14)

where ¢ is the density of the matter in motion, v; are the velocity

components and U is the potential of the gravitational field. The

*equations of motion are then written

V., T6? = FpxgaBy FBy, (15)
where
—_— 2l T
v, T = 9T + Thp T*P 4 I'f, Tww, (16)

dz"

~ being the Christoffel symbols of the second kind.

In case of an ideal fluid, pyy = o (i, k =1, 2, 3). But if

we take the viscosity into account, we may write

Y @

po= pY being the dynamic viscosity.
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The equations (15) then represent the complete equations of

the relativistic magnetohydrodynamics in the Fock approximation.
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